CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER

EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY ON BEHALF OF THE MARITIME AND COASTGUARD AGENCY

STCW 78 as amended MANAGEMENT ENGINEER REG. III/2 (UNLIMITED)

040-32 - APPLIED HEAT
MONDAY, 15 OCTOBER 2018
1315 - 1615 hrs
Examination paper inserts:
Notes for the guidance of candidates:
1. Non-programmable calculators may be used.
2. All formulae used must be stated and the method of working and ALL intermediate steps must be made clear in the answer.

Materials to be supplied by examination centres:

Thermodynamic and Transport Properties of Fluids (5th Edition) Arranged by Y.R. Mayhew and C.F.C. Rogers

Graph paper

Candidate's examination workbook

APPLIED HEAT

Attempt SIX questions only

All questions carry equal marks

Marks for each part question are shown in brackets

A perfect gas is heated at constant pressure and then expands reversibly according to the law $pV^{1.4}$ =constant.

The initial pressure and temperature are 15 bar 600°C respectively.

The final pressure is 1.0 bar and the final volume is 12 times the initial volume.

- (a) Sketch the process on a Temperature-specific entropy diagram. 2
- (b) Calculate EACH of the following:
- the final temperature; (2)
- (ii) the temperature after the heating process;

(2)

- (iii) the specific work transfer; (iv) the net change in specific entropy for the polytropic process. 6) **4**
- Note: for the gas $c_p = 5.179 \text{ kJ/k}$ and R = 2.078 kJ/kgK

? In the open cycle gas turbine plant shown in Fig Q2, the HP turbine drives the compressor and the LP turbine drives the load.

respectively. Air enters the compressor at a pressure and temperature of 1.05 bar and 15°C

The combustion products enter the HP turbine at a pressure of 9.45 temperature of 1027°C. bar and

The gas entering the LP turbine is at a pressure of $3.23\ \text{bar}$ and leaves at a pressure of $1.05\ \text{bar}$.

The isentropic efficiency of the compressor is 0.84.

The isentropic efficiency of the LP turbine is 0.86

The mass flow of fuel and all system losses may be ignored.

- (a) Sketch the cycle on a Temperature-specific entropy diagram.
- (b) Calculate EACH of the following:
- (i) the compressor specific work input;
- (ii) the specific net work output;
- (iii) the cycle thermal efficiency.

ω

6

£

ω(ω

Note: for air y = 1.4 and $c_p = 1.005$ kJ/kgK

for the combustion products y = 1.33 and $c_p = 1.15 \text{ kJ/kgK}$

ယ Heptane (C₇H₁₆) is burned with an air fuel ratio of 13:1 by mass

The combustion products are then cooled to a temperature of 127°C at a constant pressure of 1.105 bar.

Calculate EACH of the following for 1 kg of fuel:

- (a) the mass of carbon burned to CO₂;
- **b** the volumetric analysis of the total combustion products;
- <u>C</u> the volume of the combustion products after cooling

4

6

6)

Note: atomic mass relationships H=1, C=12, O=16, N=14. universal gas constant $R_o=8.3145$ kJ/kmolK air contains 23.3% oxygen by mass.

4, The volume of a steam condenser shell is 8 m³. It contains 0.47 kg of wet steam an additional mass of air at a temperature of 36.2°C.

The vacuum gauge reading at this condition is 93%.

After a period of time 0.037 kg of steam has condensed and 0.09 kg of air has leaked in.

The atmospheric pressure remains constant at 1 bar.

Calculate EACH of the following:

- (a) the initial mass of air; **4**
- **b** the initial mass of dry saturated vapour and saturated liquid; **4**
- <u>C</u> the final temperature; **£**
- <u>a</u> the vacuum gauge reading at the final condition. **£**

Note: for air R = 0.287 kJ/kgK

Ÿ In a 50% reaction turbine stage, dry saturated steam at pressure of 3 bar leaves the fixed blades with a velocity of 120~m/s.

The moving blade exit angle is 25° and the mean blade height is 40 mm.

The axial velocity of the steam is 75% of the blade velocity at the mean blade

The mass flow of steam through the stage is 7200 kg/hr.

- (a) Sketch the stage velocity diagram indicating the velocities and relationships. **£**
- (b) Calculate EACH of the following:
- \equiv the rotor speed in rev/min;
- (ii) the diagram power;

 \Im

6)

- (iii) the stage enthalpy drop \mathfrak{S}
- ò A vapour compression refrigeration plant uses R134a.

1.6393 bar and 13.174 bar. refrigerant enters the compr -5°C respectively compressor ctively and undergoes at a pressure isentropic and temperature compression ಕ ಕ

The liquid refrigerant leaves the condenser at a temperature of 35°C

The cooling load is 250 kW.

<u>a</u> Sketch the cycle on a pressure-specific enthalpy diagram indicating heat and work transfer. areas of

2

2

- **b** Sketch the cycle on a Temperature-specific entropy diagram indicating areas of superheat and sub cooling.
- (c) Calculate EACH of the following:
- \equiv the mass of dry saturated vapour entering the evaporator; 4
- the compressor power; **£**
- (iii) the coefficient of performance; (2)
- (iv) the Carnot coefficient of performance between the same temperature limits.

2

7. A steel pipe has an internal diameter of 100 mm and a wall thickness of 8 mm.

insulation, each 10 mm thick carries wet steam a pressure 앜 7 bar and is covered with two 앜

The outer layer of insulation becomes contaminated and is removed.

The surrounding air temperature remains constant at 20°C.

Calculate EACH of the following:

- (a) the insulation; heat loss per metre length 으 pipe when covered in two layers 으
- ਉ the percentage increase in heat loss when the outer layer is removed;
- <u>O</u> the percentage increase in outer surface temperature

5

5

6

Note: the the heat transfer coefficient of the outer surface = $15 W/m^2 K$ the thermal conductivity of the inner insulation = 0.045 W/mK the thermal conductivity of the outer insulation = 0.13 W/mK the thermal conductivity of steel = 52 W/mK heat transfer coefficient of the inner surface may be ignored.

င့်တ with perfect intercooling. A single acting, two stage reciprocating compressor is designed for minimum work

bottom dead centre. The low pressure cylinder contains a mass of 0.02 kg of air when the piston S. at

respectively through an overall pressure ratio of 16:1. air is compressed from a pressure and temperature of 0.95 bar and 25°C

The index of expansion and compression in both stages 요.

The clearance volume in each stage is 5% of the respective swept volume and the compressor runs at a speed of 500 rev/min.

- <u>a</u> Sketch the cycle on a pressure-Volume diagram. 2
- (b) Calculate EACH of the following:
- \equiv the compressor indicated power; 6)
- the heat rejected during the compression process; **£**
- (iii) the rate of heat rejection in the intercooler. **£**

for air **Y** = 1.4, $c_p =$ 1.005 kJ/kgK and R= 0.287 kJ/kgK

A straight section of horizontal pipe tapers in diameter from 300 mm at inlet to 150 mm at outlet.

9

The mass flow of fresh water through the pipe is 500 tonne per hour and the pressure at inlet is 3 bar.

(a) Calculate EACH of the following:

 $\widehat{\Xi}$

- the fluid velocity at the outlet end;
- (ii) the pressure at the outlet end;

(5)

(2)

(5)

- (iii) the longitudinal thrust on the pipe.
- <u>(b</u> Sketch a diagram of forces acting on the pipe.

4