CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY -MARINE ENGINEER OFFICER

EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY ON BEHALF OF THE MARITIME AND COASTGUARD AGENCY

STCW 78 (as amended) CHIEF ENGINEER REG. III/2 (UNLIMITED)

041-32 - APPLIED HEAT

MONDAY, 11 JULY 2016

1315 - 1615 hrs

Examination paper inserts:

Notes for the guidance of candidates:

- 1. Non-programmable calculators may be used.
- 2. All formulae used must be stated and the method of working and ALL intermediate steps must be made clear in the answer.

Materials to be supplied by examination centres:

Candidates examination workbook Graph paper 'Thermodynamic and Transport Properties of Fluids' by Mayhew & Rogers (5th edition)

APPLIED HEAT

Attempt SIX questions only.

All questions carry equal marks.

Marks for each part question are shown in brackets.

1. A theoretical engine cycle consists of the following four sequential processes: compression according to the law pV^{1.28} from the initial conditions; constant volume heat addition; expansion according to the law pV^{1.33} to the initial volume; constant volume heat rejection to the initial temperature.

The initial pressure and temperature are 1 bar and 43°C.

The volume compression ratio is 13:1.

The heat addition is 1200 kJ/kg of working fluid.

The working fluid has the properties of air throughout.

(a)	Sketch the cycle on Pressure-Volume and Temperature-specific entropy diagrams.	(4)
(b)	Calculate EACH of the following:	
	(i) the heat transfer during the compression process;	(6)
	(ii) the heat transfer during the expansion process;	(2)
	(iii) the cycle efficiency.	(4)

Note: for air $c_v = 0.718 \text{ kJ/kgK}$, R = 0.287 kJ/kgK

2. Air enters the compressor of simple gas turbine plant at a pressure and temperature of 1.013 bar and 298 K respectively and is compressed through a pressure ratio of 12:1 with an isentropic efficiency of 0.85.

The hot gases enter the turbine at a temperature of 1500 K and expand down to the initial pressure with an isentropic efficiency of 0.9.

The mass flow rate of air is 250 kg/min and the mass flow rate of fuel may be ignored.

(a)	Sketch the cycle on a Temperature-specific entropy diagram.	(2)

(b) Calculate EACH of the following:

(i)	the compressor outlet temperature;	(2)
(ii)	the turbine outlet temperature;	(2)
(iii) the net power output;	(5)
(iv)	the work ratio;	(2)
(v)	the thermal efficiency of the cycle.	(3)

Note: for air $\gamma = 1.4$ and $c_p = 1.005 \text{ kJ/kgK}$ for the hot gas $\gamma = 1.33$ and $c_p = 1.15 \text{ kJ/kgK}$

3. A producer gas has the following volumetric composition: 49% H_2, 20% CH_4, 18% CO, 6% N_2, 4% CO_2, 2% C_3H_8, 1% O_2.

The gas is completely burned in 20% excess air.

Calculate EACH of the following:

(a)	the volumetric air/fuel ratio for stoichiometric combustion;	(6)
(b)	the percentage volumetric analysis of the wet combustion products;	(6)
(c)	the gravimetric analysis of the dry products of combustion.	(4)
Not	e: Relative atomic masses carbon = 12, hydrogen = 1, oxygen = 16,	

Note: Relative atomic masses carbon = 12, hydrogen = 1, oxygen = nitrogen = 14. Air contains 21% oxygen by volume. 4. In a steam power plant, steam enters the turbine at a pressure and temperature of 60 bar and 500°C respectively and expands to 0.08 bar dryness fraction 0.95.

There is 5.5 K sub-cooling in the condenser and the feed pump work may be ignored.

The boiler has an efficiency of 80% when burning fuel with a carbon content of 90% by mass and a calorific value of 39 MJ/kg.

The carbon dioxide in the exhaust gas is to be extracted which will reduce the work output by 1 $MJ/kg CO_2$ generated.

Calculate EACH of the following:

(a)	the thermal efficiency of the plant before the CO_2 extraction takes place;	(6)
(b)	the mass flow of fuel per kg of steam produced;	(2)

(c) the thermal efficiency when the CO_2 extraction takes place. (8)

5. The speed of rotation of a stage in a 50% reaction turbine is 4000 rev/min.

The mean blade velocity is 150 m/s and the mean blade height is 30 mm.

The blade speed ratio is 0.6 and the blade exit angle is 20°.

The specific volume of the steam at this stage is $0.65 \text{ m}^3/\text{kg}$.

- (a) Sketch the velocity vector diagram for the stage and identify ALL velocities. (3)
- (b) Calculate EACH of the following:
 - (i) the absolute velocity of the steam leaving the stage;(3)(ii) the diagram efficiency for the stage;(3)
 - (iii) the mass flow of steam through the turbine in tonne/hour; (4)
 - (iv) the specific enthalpy drop across the stage. (3)

6. A vapour compression refrigeration plant using R134a operates between saturation temperatures of -20°C and +25°C.

The plant produces 200 kg/hour of ice at -12°C from water at +20°C.

The refrigerant enters the expansion valve at the rate of 531 kg/hour with 5 K of sub-cooling.

The isentropic efficiency of the compressor is 93.1%.

- (a) Sketch the cycle on P-h and T-s diagrams. (4)
- (b) Calculate EACH of the following:

(i)	the temperature of the refrigerant entering the compressor;	(4)
(ii)	the temperature of the refrigerant leaving the compressor;	(6)

(2)

(iii) the cycle co-efficient of performance.

Note: for water $c_p = 4.187 \text{ kJ/kgK}$ for ice $c_p = 2.1 \text{ kJ/kgK}$ and enthalpy of fusion = 335 kJ/kg

outer surface heat transfer coefficient =13 W/m²K Stefan-Boltzmann constant σ_{sb} = 56.7 x10⁻¹² kW/m²K⁴

7. An insulated container 3 m long, 2.4 m wide and 2.6 m high consists of an insulating layer of 200 mm thick cork placed between an inner layer of 5 mm thick aluminium and an outer layer of 5 mm thick steel.

The exposed surface of the aluminium is at -15° C when the outside atmosphere is at $+25^{\circ}$ C.

Calculate EACH of the following:

(a)	the heat flow into the container per hour;	(8)
(b)	the interface temperatures between the cork and the steel;	(3)
(c)	the emissivity of the aluminium at -15°C when the contents of the container are at -25°C and the net emissive power from the aluminium is 15% of the value calculated in Q7(a).	(5)
Not	e: thermal conductivity of aluminium = 205 W/mK thermal conductivity of cork = 0.04 W/mK thermal conductivity of steel = 54 W/mK	

8. A two stage, single acting reciprocating air compressor is designed for minimum work and has perfect inter-cooling.

The pressure and temperature at inlet are 1 bar and 20°C respectively, the discharge pressure is 36 bar.

The swept volume of the first stage is 0.01 m^3 and the clearance volume is 3% of the swept volume.

The polytropic index for all the expansion and compression processes is 1.2, the mechanical efficiency of the compressor is 0.8 and the speed is 240 rev/min.

- (a) Sketch the processes on a p-V diagram indicating the pressures and volumes. (4)
- (b) Calculate EACH of the following:

(i)	the first stage volumetric efficiency;	(3)
-----	--	-----

(ii) the mass of air delivered per second; (4)

(5)

(iii) the input power.

Note: for air R = 0.287 kJ/kgK

- 9. (a) State Dalton's law of partial pressures. (4)
 (b) A reservoir containing a mixture of air and 375 grams of steam at a temperature of 250°C, has a volume of 0.6 m³.
 A gauge indicates a reservoir pressure of 2.1 bar when the atmospheric pressure is 744 mm of mercury.
 Determine EACH of the following:

 (i) the partial pressure of the steam;
 (4)
 (ii) the mass of the air in the reservoir;
 (3)
 (iii) the total enthalpy of the mixture.
 - Note: for air R = 0.287 kJ/kgK, y = 1.4750 mm of Hg = 1 bar