CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER

EXAMINATIONS ADMINISTERED BY THE
SCOTTISH QUALIFICATIONS AUTHORITY
ON BEHALF OF THE
MARITIME AND COASTGUARD AGENCY

STCW 95 CHIEF ENGINEER REG. III/2 (UNLIMITED)

041-32 - APPLIED HEAT

MONDAY, 15 JULY 2013
1315-1615 hrs

Examination paper inserts:
\square

Notes for the guidance of candidates:

1. Non-programmable calculators may be used.
2. All formulae used must be stated and the method of working and ALL intermediate steps must be made clear in the answer.

Materials to be supplied by examination centres:
Candidates examination workbook
Graph paper
‘Thermodynamic and Transport Properties of Fluids' by Mayhew \& Rogers ($5^{\text {th }}$ edition)

APPLIED HEAT

Attempt SIX questions only.

All questions carry equal marks.

Marks for each part question are shown in brackets.

1. A mass of 0.1 kg of helium is compressed reversibly in a cylinder, according to the law $\mathrm{pV}^{\mathrm{n}}=$ constant, from a pressure of 0.98 bar and a temperature of $12^{\circ} \mathrm{C}$ to a pressure of 8.2 bar. The final temperature is $551.4^{\circ} \mathrm{C}$.
(a) Calculate EACH of the following:
(i) the index of compression;
(ii) the magnitude and direction of the work transfer;
(iii) the magnitude and direction of the heat transfer;
(iv) the change in entropy.
(b) Sketch the process on $\mathrm{p}-\mathrm{V}$ and $\mathrm{T}-\mathrm{s}$ diagrams.

Note: \quad For helium, $\gamma=1.667$ and $R=2.077 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.
2. An air standard dual combustion cycle operates with a minimum temperature and pressure of $30^{\circ} \mathrm{C}$ and 0.98 bar respectively. The volume compression ratio is $23 / 1$. The maximum pressure is 90 bar and the maximum temperature is $1430^{\circ} \mathrm{C}$.
(a) Sketch the cycle on $\mathrm{p}-\mathrm{V}$ and T-s diagrams.
(b) Calculate the thermal efficiency of the cycle.

Note: \quad For air, $\gamma=1.4$ and $R=0.287 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.
3. A fuel has mass analysis 80% carbon, 16% hydrogen, 2% moisture, 0.5% sulphur, remainder ash.
(a) Calculate the theoretical air/fuel ratio by mass.
(b) Calculate the volumetric analysis of the dry combustion products (ie excluding $\mathrm{H}_{2} \mathrm{O}$ and soluble SO_{2}) when the fuel is completely burned in 15% excess air.

Note: \quad relative atomic masses: $H=1 ; C=12 ; N=14 ; O=16 ; S=32$
Air contains 21% oxygen by volume.
4. In a regenerative steam power plant, the steam enters the turbine at a pressure of 50 bar and a temperature of $400^{\circ} \mathrm{C}$, and leaves at a pressure of 0.08 bar with a dryness fraction of 0.9 . Dry saturated steam is bled from the turbine at a pressure of 2 bar, and supplied to a direct mixing feed heater. The feed water leaves the heater at the saturation temperature of the bled steam. The mass of bled steam is 14.7% of the boiler supply.
(a) Sketch the T-s diagram for the cycle.
(b) Determine EACH of the following:
(i) the isentropic efficiency of the turbine;
(ii) the enthalpy of the condensate leaving the condenser;
(iii) the thermal efficiency of the cycle.

Note: \quad Work input to feed pumps may be disregarded.
5. The specific enthalpy drop in the nozzles of a simple impulse turbine is $495 \mathrm{~kJ} / \mathrm{kg}$. The moving blades are symmetrical, and the blade velocity coefficient is 0.9 . Steam leaves the blades in an axial direction. The diagram efficiency is 0.82 .
(a) Sketch the combined velocity diagram, clearly labelling velocities and angles.
(b) Determine EACH of the following:
(i) the blade velocity;
(ii) the change in whirl velocity;
(iii) the nozzle angle;
(iv) the blade angle.
6. In a vapour compression refrigeration cycle the evaporating temperature is $-10^{\circ} \mathrm{C}$ and the condensing temperature is $40^{\circ} \mathrm{C}$. The refrigerant enters the compressor as dry saturated vapour, and leaves the condenser as saturated liquid. Compression is isentropic.
(a) Sketch the cycle on p-h and T-s diagrams.
(b) Given that the refrigerant is Tetrafluoroethane (R 134a), determine EACH of the following:
(i) the maximum cycle pressure;
(ii) the maximum cycle temperature;
(iii) the coefficient of performance of the cycle.
(c) The refrigerant is replaced with Ammonia (R 717). Determine EACH of the following:
(i) the maximum cycle pressure;
(ii) the maximum cycle temperature.
7. An aluminium hot air duct has outer diameter 0.9 m and negligible wall thickness. The air in the duct is at a temperature of $50^{\circ} \mathrm{C}$ and the surrounding air temperature is $22^{\circ} \mathrm{C}$. The inner surface heat transfer coefficient is $20 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ and the outer surface heat transfer coefficient is $15 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.

It is proposed to lag the duct with rock wool to a thickness of 200 mm . The rock wool is provided in flat sheets 100 mm thick, each square metre having a quoted thermal resistance of $2.25 \mathrm{~K} / \mathrm{W}$. When the lagging is applied to the duct, the outer surface heat transfer coefficient may be assumed to be unchanged.

Calculate EACH of the following:
(a) the rate of heat loss per metre run without lagging;
(b) the rate of heat loss per metre run after the lagging is applied.
8. At the beginning of compression in a single stage, single acting reciprocating air compressor, the air is at a pressure of 1.02 bar and a temperature of $30^{\circ} \mathrm{C}$. When the delivery valve opens, the pressure is 6.5 bar. The index of compression and expansion is 1.27. The bore diameter and stroke length are respectively 0.30 m and 0.35 m . The clearance volume is 6% of the swept volume and the compressor runs at $560 \mathrm{rev} / \mathrm{min}$.
(a) Sketch the p-V diagram.
(b) Calculate EACH of the following:
(i) the volumetric efficiency;
(ii) the indicated power;
(iii) the free air capacity in $\mathrm{m}^{3} / \mathrm{min}$, given that the free air conditions are 1.00 bar and $26^{\circ} \mathrm{C}$.

Note: \quad For air, $R=0.287 \mathrm{~kJ} / \mathrm{kg}$ K.
9. (a) Explain the term "choked flow" in a nozzle.
(b) Steam expands isentropically in a convergent-divergent nozzle. The pressure of the steam at nozzle inlet is 10 bar and its temperature is $400^{\circ} \mathrm{C}$. The outlet pressure is 2 bar. The expansion follows the law $\mathrm{pv}^{1.3}=$ constant. The mass flow rate of steam is $5 \mathrm{~kg} / \mathrm{s}$. The overall enthalpy drop is calculated as $410 \mathrm{~kJ} / \mathrm{kg}$.

Calculate EACH of the following:
(i) the throat area;
(ii) the exit area.

Note: $\quad p_{C}=p_{O} \times\left(\frac{2}{n+1}\right)^{\left(\frac{n}{n-1}\right)} ; \quad a=\sqrt{n p v}$.

