CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY MARINE ENGINEER OFFICER

EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY
ON BEHALF OF THE
MARITIME AND COASTGUARD AGENCY
\section*{STCW 95 CHIEF ENGINEER REG. III/2 (UNLIMITED)}

041-32 - APPLIED HEAT

MONDAY, 28 MARCH 2011
1315-1615 hrs

Examination paper inserts:
\square

Notes for the guidance of candidates:

1. Non-programmable calculators may be used.
2. All formulae used must be stated and the method of working and ALL intermediate steps must be made clear in the answer.

Materials to be supplied by examination centres:
Candidates examination workbook
Graph paper
'Thermodynamic and Transport Properties of Fluids' by Mayhew \& Rogers ($5{ }^{\text {th }}$ edition)

APPLIED HEAT

Attempt SIX questions only.

All questions carry equal marks.

Marks for each part question are shown in brackets.

1. Ideal gas in a cylinder is heated at constant volume from a temperature of $600^{\circ} \mathrm{C}$ to a temperature of $1000^{\circ} \mathrm{C}$, and then further heated at constant pressure from $1000^{\circ} \mathrm{C}$ to $1300^{\circ} \mathrm{C}$. The change in specific entropy in the first process is $0.283 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$. After being heated, the gas expands isentropically to fifteen times its initial volume and a temperature of $306^{\circ} \mathrm{C}$.
(a) Sketch the processes on p-V and T-s diagrams.
(b) Determine EACH of the following:
(i) the values of $\mathrm{c}_{\mathrm{V}}, \mathrm{c}_{\mathrm{P}}$ and γ for the gas;
(ii) the change in specific entropy during the constant pressure process;
(iii) the work transfer per kg of gas during isentropic expansion.
2. In an air standard dual combustion cycle, the volume compression ratio is $20 / 1$. The maximum and minimum temperatures are 2000 K and 300 K respectively. The maximum and minimum pressures are 80 bar and 1 bar respectively.
(a) Sketch the cycle on $\mathrm{p}-\mathrm{V}$ and T-S diagrams.
(b) Determine EACH of the following:
(i) the thermal efficiency;
(ii) the mean effective pressure.

Note: For air, $\gamma=1.4$ and $c_{P}=1.005 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$.
3. A gaseous fuel consists of a mixture of equal volumes of methane $\left(\mathrm{CH}_{4}\right)$ and ethane $\left(\mathrm{C}_{2} \mathrm{H}_{6}\right)$. It is completely burned in 60% excess air. The combustion gases leave at a pressure of 0.991 bar and a temperature of $250^{\circ} \mathrm{C}$. The temperature of the surroundings is $27^{\circ} \mathrm{C}$.
(a) Formulate the full combustion equation per kmol of fuel.
(b) Determine the mean value of c_{P} for the dry combustion products.
(c) Estimate (per kmol of fuel) the total quantity of heat which could be recovered by cooling the exhaust gases at constant total pressure to a temperature of $27^{\circ} \mathrm{C}$.

Note: atomic mass relationships: $H=1 ; C=12 ; O=16 ; N=14$ Air contains 21% oxygen by volume. values of c_{P} in $\mathrm{kJ} / \mathrm{kg} \mathrm{K}: \mathrm{CO}_{2}: 0.945 ; \mathrm{O}_{2}: 0.944 ; \mathrm{N}_{2}: 1.047$
4. A regenerative steam power cycle operates between pressures of 50 bar and 0.08 bar. The maximum temperature is $450^{\circ} \mathrm{C}$. The optimum mass of steam is bled for feed heating at a pressure of 5 bar. A direct mixing feed heater is used.
(a) Sketch the T-s diagram for the cycle.
(b) Determine for the cycle EACH of the following:
(i) the specific work output (taking account of feed pump work);
(ii) the thermal efficiency.

Note: Expansion in the turbine and compression in the feed pumps are isentropic.
5. The drop in specific enthalpy as steam passes through the nozzles of a two-row velocity compounded impulse turbine stage is $460 \mathrm{~kJ} / \mathrm{kg}$. The nozzle angle is 20° and the blade velocity is $225 \mathrm{~m} / \mathrm{s}$. All the blades are symmetrical, and blade friction is negligible. The axial velocity component remains constant throughout the stage.
(a) Sketch the combined velocity diagrams for each moving row, labelling velocities and angles.
(b) Determine EACH of the following:
(i) all the blade angles;
(ii) the blade work per kg .
6. It is proposed that $\mathrm{H}_{2} \mathrm{O}$ might be used as the refrigerant in a simple vapour compression cycle to maintain the contents of a container at a temperature of $10^{\circ} \mathrm{C}$. The temperature of the surroundings is $35.8^{\circ} \mathrm{C}$. To achieve the required heat transfer, the temperature difference between the cold space and the evaporating refrigerant should be 6 K and the minimum temperature difference between the condensing refrigerant and the surroundings should be 10 K . The refrigerant enters the compressor dry and saturated, and there is no undercooling in the condenser. The isentropic efficiency of the compressor is 0.8 .
(a) Sketch the cycle on a T-s diagram.
(b) Determine EACH of the following:
(i) the evaporating and condensing pressures;
(ii) the temperature at compressor outlet;
(iii) the coefficient of performance of the cycle.
(c) State ONE major practical drawback of this proposal.
7. Sea water is to be used to cool engine cooling water in a single pass shell and tube heat exchanger. The cooling water is to enter the tubes at a temperature of $80^{\circ} \mathrm{C}$ and to be cooled to $30^{\circ} \mathrm{C}$. The flow rate of cooling water will be $2 \mathrm{~kg} / \mathrm{s}$. The sea water will enter at a temperature of $12^{\circ} \mathrm{C}$ and its flow rate will be $12.5 \mathrm{~kg} / \mathrm{s}$. The specific heat capacities of both cooling water and sea water may be taken as $4.2 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$. The overall heat transfer coefficient is expected to be $3000 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, based on the outside surface area of the tubes. The tube outside diameter is to be 50 mm .

Determine EACH of the following:
(a) the outlet temperature of the sea water;
(b) the logarithmic mean temperature difference for EACH of the following cases:
(i) counter flow;
(ii) parallel flow;
(c) the total length of tubing required for EACH of the following cases:
(i) counter flow;
(ii) parallel flow.
8. At the beginning of compression in a single stage, single acting reciprocating air compressor, the air is at a pressure of 1.01 bar and a temperature of $28^{\circ} \mathrm{C}$. The delivery valve opens at a pressure of 6.2 bar. The delivery temperature is $175^{\circ} \mathrm{C}$. The bore diameter and stroke length are 0.25 m and 0.32 m respectively. The clearance volume is 4% of the swept volume and the compressor runs at $500 \mathrm{rev} / \mathrm{min}$.
(a) Sketch the $\mathrm{p}-\mathrm{V}$ diagram.
(b) Determine EACH of the following:
(i) the index of compression;
(ii) the volumetric efficiency;
(iii) the indicated work per kg of air;
(iv) the free air capacity in $\mathrm{m}^{3} / \mathrm{min}$, given that free air conditions are 1.03 bar and $25^{\circ} \mathrm{C}$.

Note: \quad For air, $R=0.287 \mathrm{~kJ} / \mathrm{kg}$ K.
9. (a) Explain why impulse turbine nozzles have convergent-divergent form.
(b) Air expands isentropically in a convergent-divergent nozzle. The pressure at nozzle inlet is 12 bar and the inlet temperature is 400 K . The outlet pressure is 5 bar. The mass flow rate is $5.2 \mathrm{~kg} / \mathrm{s}$.

Determine EACH of the following:
(i) the throat area;
(ii) the exit area.

Note: $\quad p_{c}=p_{0} \times\left(\frac{2}{\gamma+1}\right)^{\gamma /(\gamma-1)} ; \quad T_{c}=T_{0} \times\left(\frac{2}{\gamma+1}\right) ; \quad a=\sqrt{\gamma R T}$
For air, $R=0.287 \mathrm{~kJ} / \mathrm{kg} \mathrm{K}$ and $\gamma=1.4$.

