# CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY – MARINE ENGINEER OFFICER

## EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY ON BEHALF OF THE MARITIME AND COASTGUARD AGENCY

## STCW 95 CHIEF ENGINEER REG. III/2 (UNLIMITED)

#### 041-33 - ELECTROTECHNOLOGY

#### THURSDAY, 18 JULY 2013

0915 - 1215 hrs

Examination paper inserts:

Notes for the guidance of candidates:

- 1. Non-programmable calculators may be used.
- 2. All formulae used must be stated and the method of working and ALL intermediate steps must be made clear in the answer.

Materials to be supplied by examination centres:

Candidate's examination workbook Graph Paper

#### ELECTROTECHNOLOGY

Attempt SIX questions only.

All questions carry equal marks.

## Marks for each part question are shown in brackets.

- 1. Determine EACH of the following, for the circuit shown in Fig Q1:
  - (a) the current in the 1 k $\Omega$  moving coil meter;

(8)

(8)

(b) the value of a resistor to be placed in series with the meter to reduce the current in the meter to 1 mA.



Fig Q1

2. A capacitor 'C' is connected in series with a resistor of 2 k $\Omega$  to a 150 V d.c. supply. When the capacitor is fully charged the energy stored is 4.5 J.

## Determine EACH of the following:

| (a) | the value of the capacitor;                                                                             | (5) |
|-----|---------------------------------------------------------------------------------------------------------|-----|
| (b) | the time taken for the capacitor to charge to half the supply voltage;                                  | (5) |
| (c) | the value of resistance to be added in series to increase the time found in part (b) above to 1.2 secs. | (6) |

3. Fig Q3 shows a two stage transistor amplifier using high gain transistors whose base currents are small enough to be neglected. The voltage between base and emitter for transistor  $T_1$  is 0.4 V. and for transistor  $T_2$  it is 0.6 V.

Determine EACH of the following:

- (a) the collector current for  $T_1$ ; (4)
- (b) the voltage at the base of  $T_2$ ; (4)
- (c) the collector current for  $T_2$ ; (4)

(4)

(4)

(6)

(d) the steady state value of  $V_{\text{OUT}}$ .





4. A capacitor connected in series with a resistor is tested on 240 V 50 Hz and the current is found to be 3.6 A. When the frequency is raised to 100 Hz the current increases to 4.8 A.

Determine EACH of the following:

| (a) | the values of the resistor and the capacitor; | (6) |
|-----|-----------------------------------------------|-----|
|-----|-----------------------------------------------|-----|

(b) the power factor of the circuit at 50 Hz;

(c) the value of an inductor which, when connected in series with the pair, will give the same current of 3.6 A at 50 Hz but with a lagging power factor equal to the value obtained in part (b).

5. A three phase, 240 V, 4 wire unbalanced system has a current in the red phase of 5 A at unity power factor and a current in the yellow phase of 8 A lagging by 30°. If the current in the neutral line is 1.93A in phase with the red line voltage.

Calculate EACH of the following:

| (a) | the magnitude of the current in the blue line;     | (6) |
|-----|----------------------------------------------------|-----|
| (b) | its angular relationship to the blue line voltage; | (6) |
| (c) | the total power drawn by this unbalanced circuit.  | (4) |

6. A 3 ph, 440 V, 60 Hz, 8 pole induction motor runs at a power factor of 0.85 lag and drives a load of 8 kW at a speed of 14.4 rev/sec. The stator loss is 1 kW and the rotational losses

Calculate EACH of the following:

(windage and friction) amount to 0.8 kW.

| (a) | the synchronous speed;        | (3) |
|-----|-------------------------------|-----|
| (b) | the rotor copper loss;        | (5) |
| (c) | the input power to the motor; | (4) |
| (d) | the motor current.            | (4) |

| 7. | (a) | State the main reason why switchboard instruments are supplied via instrument transformers from the power circuits which they monitor.                            | (4) |
|----|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|    | (b) | Explain why it is hazardous to open circuit a current transformer whilst its primary is still energised.                                                          | (4) |
|    | (c) | Sketch a circuit diagram showing an ammeter, a voltmeter and a wattmeter only fed from a single phase supply via a current transformer and a voltage transformer. | (4) |
|    | (d) | An ammeter, a voltmeter and a wattmeter monitoring a single phase supply read 40 A, 240 V and 8 KW respectively.                                                  |     |
|    |     | Calculate the power factor of the circuit.                                                                                                                        | (4) |

8. With reference to a three phase squirrel cage induction motor:

| (a) | sketch a labelled diagram of the motor construction;                                                                                                                               | (4) |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (b) | explain the process of torque production in the motor;                                                                                                                             | (5) |
| (c) | sketch a typical torque/speed curve for the motor and indicate the position of the starting, 'pull-out' and running points on the curve;                                           | (3) |
| (d) | explain why the motor draws a high current and has a low power factor on starting.                                                                                                 | (4) |
|     |                                                                                                                                                                                    |     |
| (a) | Draw a circuit diagram illustrating how a single thyristor ('silicon controlled rectifier') may be used to provide a variable voltage d.c. output from a single phase a.c. supply. | (8) |
| (b) | Explain how the 'firing angle' of the thyristor is varied.                                                                                                                         | (4) |
| (c) | Sketch waveforms for the output voltage when the firing angle is:                                                                                                                  |     |
|     | (i) 60°;                                                                                                                                                                           | (2) |
|     | (ii) 120°.                                                                                                                                                                         | (2) |

9.