# CERTIFICATES OF COMPETENCY IN THE MERCHANT NAVY – MARINE ENGINEER OFFICER

# EXAMINATIONS ADMINISTERED BY THE SCOTTISH QUALIFICATIONS AUTHORITY ON BEHALF OF THE MARITIME AND COASTGUARD AGENCY

### STCW 95 CHIEF ENGINEER REG. III/2 (UNLIMITED)

#### 041-33 - ELECTROTECHNOLOGY

## THURSDAY, 19 JULY 2012

0915 - 1215 hrs

Examination paper inserts:

Notes for the guidance of candidates:

- 1. Non-programmable calculators may be used.
- 2. All formulae used must be stated and the method of working and ALL intermediate steps must be made clear in the answer.

Materials to be supplied by examination centres:

Candidate's examination workbook Graph Paper

### ELECTROTECHNOLOGY

Attempt SIX questions only.

All questions carry equal marks.

#### Marks for each part question are shown in brackets.

- 1. (a) For the measuring network shown in Fig Q1 calculate the resistance  $(R_M)$  of the moving coil instrument if it is to read 10 mA. (8)
  - (b) Calculate the reading on the instrument if the 100  $\Omega$  and the 80  $\Omega$  resistors are interchanged. (8)



Fig Q1

2. A non-linear element is connected in series with a variable resistor across a 240 V d.c. supply. The non-linear element has a characteristic given by  $I = kV^2$ . When the variable resistor is set to 10  $\Omega$  the supply current is 12 A.

Determine EACH of the following:

- (a) the value to which the variable resistor must be set to reduce the current to 6 A; (6)
- (b) the power dissipated in the non-linear element when the current is 6 A; (2)
- (c) the current if the supply voltage is reduced to 150 V and the series resistor is set to  $10 \Omega$ . (8)
- 3. A simple voltage stabiliser consists of a 1 W Zener diode and a series resistor 'R' as shown in Fig Q3. The Zener diode has a breakdown voltage of 12 V and a slope resistance of  $2 \Omega$ . It requires a minimum current of 2 mA for successful stabilisation. The unregulated input voltage can vary between 18 V and 24 V.

Calculate EACH of the following:

- (a) the minimum value of R if the input voltage is 24 V and the output current is zero; (6)
- (b) the maximum output current which can be drawn when the input voltage is 18 V if satisfactory stabilisation is to be maintained;
  (6)

(4)

(c) the power dissipated by the Zener diode in Q3(b).



Fig Q3

4. A single phase a.c. circuit comprises a coil of inductance 0.5 H and resistance 100  $\Omega$  in series with a capacitor 'C'. It is connected to 120 V, 50 Hz and draws a current at a leading power factor. The volt drop across the coil is 150 V.

Calculate EACH of the following:

| (a) | the current in the circuit;      | (4) |
|-----|----------------------------------|-----|
| (b) | the value of the capacitor;      | (6) |
| (c) | the power factor of the circuit; | (4) |

- (d) the power dissipated in the circuit. (2)
- 5. A three phase four wire unbalanced system has a current in the red phase of 10 A at unity power factor and the current in the yellow phase is 8 A lagging by 30°. If the current in the neutral is 3.07 A in phase with the red phase voltage, calculate EACH of the following:

| (a) | the magnitude of the current in the blue line;     | (6) |
|-----|----------------------------------------------------|-----|
| (b) | its angular relationship to the blue line voltage; | (4) |

(c) the total power dissipated in the three phase loads if the value of the phase voltage is 240 V.
 (6)

6. A 6 pole, three phase squirrel cage induction motor runs on a 415 V, 60 Hz supply. It draws a line current of 85 A at a power factor of 0.75 lag. The shaft speed is 19 revs/sec. If the iron losses are 2 KW, the stator copper loss is 1 KW and the rotational losses (windage and friction) are 1.5 KW, calculate EACH of the following:

| (a) | the slip as a per unit value; | (3) |
|-----|-------------------------------|-----|
| (b) | the rotor copper loss;        | (5) |
| (c) | the shaft output power;       | (5) |
| (d) | the efficiency.               | (3) |

| 7. | (a) | Sketch a basic circuit showing a d.c. winch motor driven by a Ward Leonard circuit powered by a single speed squirrel cage motor. | (8) |
|----|-----|-----------------------------------------------------------------------------------------------------------------------------------|-----|
|    | (b) | Explain how reversal of the winch motor is achieved using the Ward Leonard system.                                                | (4) |
|    | (c) | State ONE advantage and ONE disadvantage of the Ward Leonard drive system.                                                        | (4) |

8. With reference to the squirrel cage induction motor:

9.

| (a) | state TWO reasons why the starting current is much higher (typically 3-6 times) than the full load running current;                                                                                                                                         | (4) |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
| (b) | explain why the rotor power factor is very low on starting (typically 0.2);                                                                                                                                                                                 | (3) |
| (c) | explain why almost all the iron loss occurs in the stator, with only a very small iron loss in the rotor;                                                                                                                                                   | (3) |
| (d) | describe, with the aid of a sketch, one form of rotor construction which provides improved starting torque with reduced starting current.                                                                                                                   | (6) |
| (a) | Sketch the circuit diagram for an uncontrolled, 3-phase, bridge rectifier, indicating on the sketch the direction of current flow for both halves of one phase.                                                                                             | (8) |
| (b) | Sketch the output waveform for the circuit sketched in Q9(a).                                                                                                                                                                                               | (3) |
| (c) | If a smoothing capacitor was added to the rectifier circuit sketched in Q9(a), explain why less capacitance is needed for the three phase rectifier set than a single phase rectifier for the same acceptable level of <i>ripple</i> voltage at the output. | (5) |